Pears Classification Using Principal Component Analysis and K-Nearest Neighbor
نویسندگان
چکیده
منابع مشابه
K-Nearest Neighbor Classification Using Anatomized Data
This paper analyzes k nearest neighbor classification with training data anonymized using anatomy. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values. We first study the theoretical effect of the anatomized training data on the k nearest neighbor error rate bounds, nearest neighbor convergence rate, and Bayesian error. We then v...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملAn Improved k-Nearest Neighbor Classification Algorithm Using Shared Nearest Neighbor Similarity
k-Nearest Neighbor (KNN) is one of the most popular algorithms for pattern recognition. Many researchers have found that the KNN classifier may decrease the precision of classification because of the uneven density of t raining samples .In view of the defect, an improved k-nearest neighbor algorithm is presented using shared nearest neighbor similarity which can compute similarity between test ...
متن کاملProblem Set 1 K-nearest Neighbor Classification
In this part, you will implement k-Nearest Neighbor (k-NN) algorithm on the 8scenes category dataset of Oliva and Torralba [1]. You are given a total of 800 labeled training images (containing 100 images for each class) and 1888 unlabeled testing images. Figure 1 shows some sample images from the data set. Your task is to analyze the performance of k-NN algorithm in classifying photographs into...
متن کاملIKNN: Informative K-Nearest Neighbor Pattern Classification
The K-nearest neighbor (KNN) decision rule has been a ubiquitous classification tool with good scalability. Past experience has shown that the optimal choice of K depends upon the data, making it laborious to tune the parameter for different applications. We introduce a new metric that measures the informativeness of objects to be classified. When applied as a query-based distance metric to mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SinkrOn
سال: 2020
ISSN: 2541-2019,2541-044X
DOI: 10.33395/sinkron.v4i2.10502